南湖新闻网讯(通讯员 汪亚苹,李奥运)近日,学院李家奎教授团队在牦牛源益生菌的研发及应用方面取得重要进展。该论文发表于国际微生物学术期刊Microbiology Spectrum。
牦牛是主要栖息在青藏高原高海拔缺氧环境的特有畜种,目前存栏1700多万头,主要分布于我国的青海、四川、甘肃、西藏等地,约占全世界牦牛总数的95%以上。牦牛具有重要的经济和生态学价值,是青藏高原的“能量转换器”,把高原有限的生物能转换成乳、肉、皮毛、燃料(粪便)等,同时还供役用。牦牛产业是我国青藏高原及毗邻地区的特色和经济支柱型产业,对于促进藏区经济发展、和谐稳定具有重要的社会和生态意义。然而,犊牦牛由于胃肠道发育尚不成熟以及青藏高原恶劣的环境和营养缺乏导致其胃肠道疾病高发和生长缓慢,给牦牛产业可持续发展带来严重威胁。为实现牦牛产业绿色发展以及促进犊牦牛生长发育阶段顺利过渡,永利集团304am官方入口、永利集团304am官方入口李家奎教授毅然踏上三援藏区之路,长期从事牦牛疾病防控和功能性益生菌开发等相关研究,助力藏区牦牛产业技术优化升级,为高原牦牛疾病防控事业筑起坚实的防护墙。李家奎老师团队长期坚持在科研一线,基于不断尝试从健康牦牛的肠道内筛选出对犊牦牛肠道发育和生长具有正向调节作用的乳酸杆菌和芽孢杆菌,为驰援藏区牦牛产业,保证牦牛健康贡献一份力量。
益生菌被发酵生产制作成益生菌制粒后,运送至海拔3500米的四川阿坝藏族羌族自治州红原县进行田间试验,以研究益生菌早期干预对犊牦牛的生理效益。结果发现,饲喂益生菌的犊牦牛总体重增长显著高于对照组,且分别比对照组体重增加3.16kg、3.73kg。另外,饲喂益生菌对于改善犊牦牛血清抗氧化特性(例如,超氧化物歧化酶,丙二醛,谷胱甘肽过氧化物酶,总抗氧化酶)和血清生化特性(例如谷草转氨酶、总胆固醇、白蛋白)有一定的潜力。此外,试验还发现,在益生菌策略的推动下,犊牦牛的肠道内富集了更多的有益菌的类群(见于图2),且肠道代谢谱也发生了显著变化,表现为代谢物的浓度和代谢模式的变化,包括蛋白质消化和吸收、维生素消化和吸收以及次级代谢物的生物合成方面的代谢物的富集(见于图3)。在该项目中,李家奎教授团队在肠道微生态的基础上制定了精确的益生菌干预措施并取得了犊牦牛的生理效益,为挖掘牦牛特异性肠道有益菌、减抗替抗、实现牦牛产业绿色发展以及犊牦牛胃肠道微生态平衡提供理论依据和实验基础。同时,也为促进犊牦牛生长发育阶段顺利过渡,加快我国青藏高原地区牦牛产业可持续发展,促进藏区经济发展贡献一份力量。研究成果以“Effects of Milk Replacer-Based Lactobacillus on Growth and Gut Development of Yaks’ Calves: a Gut Microbiome and Metabolic Study”为题发表,博士生汪亚苹为论文的第一作者,李家奎老师为论文的通讯作者。
近年来,李家奎教授致力于牦牛益生菌菌种开发与应用的研究,取得了系列成果,在Microbiology Spectrum,Frontiers in Microbiology,Microbial Cell Factories,Probiotics and Antimicrobial Proteins,Anaerobe,Microbial Pathogenesis等杂志发表文章12篇,分离鉴定益生菌20多株,转化生产4株,为犊牦牛早期生长发育调控奠定了理论和实践依据。
图1.李家奎老师团队在四川红原县麦洼牦牛养殖基地进行田间试验。
图2.肠道微生物群的相对丰度在门和属的水平上的显著差异。*P< 0.05,**P< 0.01。
图3.补饲益生菌驱动的不同的肠道代谢物和代谢途径。在ESI+模式(A,B)和ESI-模式(C,D)中明显改变的代谢途径。
【英文摘要】
The gut microbiota anditsmetabolic activitiesare crucial in maintaining host homoeostasis and health, of which the role of probiotics has indeed been emphasized. The current study delves into the performance of probiotics as a beneficial managemental strategy,that furtherhighlightsits impact on growth performance, serologic investigation, gut microbiota, and metabolic profiling in yak calves. A field experiment was employed consisting of 2×3 factorial controls, including two development stages 21,and42 days(about 1 and a half months) with three different feeding treatments. Results showed a positive impact of probiotic supplements on growth performance by approximately 3.16 kg (p< 0.01) than blank control. Moreover, it had the potential to improve serum antioxidants and biochemical properties. We found that microorganisms that threaten health were enriched in the gut oftheblank control with the depletion of beneficial bacteria, although all yaks were healthy.Additionally, the gut was colonized bymicrobiota successionthat assembled into a more mature microbiome,driven by probiotics strategy. The gut metabolic profiling was also significantly changed afterthe probiotic’sstrategy, i.e., the concentrations of metabolites and the metabolic pattern, including enrichments in protein digestion and absorption, vitamin digestion and absorption,andbiosynthesis of secondary metabolites. In summary, probiotics promoted gut microbiota/metabolites, developingprecise interventions, and achievingphysiological benefits based on intestinal microecology.Hence,it is important to understandabouttheprobiotic’s dietary changes togut microbiome, metabolome, and the host's phenotype.